121

8. 悪臭対策

(1) 悪臭の要因

悪臭は、一般に臭気を有する多種類の物質によって構成 されていることが多く、工場・事業場から発生する特有な 臭いは、人の嗅覚に直接作用し、時には不快な臭いとなっ て、周辺住民の生活環境を損なうものとなっています。

本市では、住宅地が郊外部へ拡大していることや住工 混在地域が多いこと、さらに身近な環境に対する市民の関 心が高まっていることなどから、多種多様な悪臭公害が顕 在化してきています。

(2) 悪臭の現況

平成 11 年から平成 20 年度までの過去 10 年間の悪臭 に係る苦情件数は、以下のとおりです。平成20年度の苦 情件数件は、平成19年度と比べて1件増加しています。

中でも、悪臭の原因が店舗や家庭など、工場に起因し ない、いわゆる都市・生活型に分類される苦情は、平成 20年度は、悪臭苦情全体の38%を占める47件でした。

◆悪臭に係る苦情件数の推移

年度	11	12	13	14	15	16	17	18	19	20
苦情 件数	134	109	128	155	183	192	165	195	123	124
行政指導 件数	0	0	0	0	0	1	2	2	0	2

(3) 悪臭防止対策

昭和46年6月の悪臭防止法制定、翌月5月の法施行 により、悪臭に係る規制が開始されました。本市では、こ れを受け昭和47年度に規制地域及び規制基準設定のため の調査を開始し、昭和48年8月、市内全域を規制地域 に指定するとともに、アンモニア等 5 物質について、法 で定められた規制基準の範囲のうち、最も厳しい数値を規 制基準として設定しました。

また、昭和51年9月及び平成元年9月に悪臭防止法 施行令が改正され、二硫化メチル等7物質が、さらに平 成5年6月にトルエン、キシレン等10物質が新たに特 定悪臭物質に追加指定されましたが、これら特定悪臭物質 についても、改正施行令施行後、基準設定調査を行い、ア ンモニア 5 物質と同様、最も厳しい規制基準を設定しま Lt-

さらに、平成6年4月に悪臭防止法施行規則が改正され、 排出水中に含まれるメチルメルカプタン、硫化水素等硫黄 系 4 物質に係る規制基準の設定方法が定められましたが、 これらの特定悪臭物質についても、平成8年4月に規制 基準を設定しました。規制対象の特定悪臭物質の規制基準 は以下のとおりです。

◆特定悪臭物質の規制基準

		規制基準			
特定悪臭物質	敷地境界	排出水中	気体排出 口		
	規制基準 (ppm)	排出水量	規制基準 (mg/L)	規制の 有無	
	0.002	0.001m³/ 秒以下	0.03		
メチルメルカプタン		0.001m³/ 秒を超え 0.1m³/ 秒以下	0.007	_	
		0.1m³/ 秒超える	0.002		
	0.02	0.001m³/ 秒以下	0.1		
硫化水素		0.001m³/ 秒を超え 0.1m³/ 秒以下	0.02	有	
		0.1m³/ 秒超える	0.005		
	0.01	0.001m³/ 秒以下	0.3		
硫化メチル		0.001m³/ 秒を超え 0.1m³/ 秒以下	0.07	_	
		0.1m³/ 秒超える	0.01		
	0.009	0.001m³/ 秒以下	0.6		
二硫化メチル		0.001m³/ 秒を超え 0.1m³/ 秒以下	0.1	_	
		0.1m³/ 秒超える	0.03		
トリメチルアミン	0.005	_	_	有	
アンモニア	1.0	_	_	有	
ノルマル酪酸	0.001	_	_	_	
イソ吉草酸	0.001	_	_	_	
ノルマル吉草酸	0.0009	_	_	_	
プロピオン酸	0.03	_	_	_	
アセトアルデヒド	0.05	_	_		
プロピオンアルデヒド	0.05	_	_	有	
/ルマルブチルアルデヒド	0.009	_	_	有	
イソブチルアルデヒド	0.02	_	_	有	
ノルマルバレルアルデヒド	0.009	_	_	有	
イソバレルアルデヒド イソブタノール	0.003	_		有	
イグフタノール	3.0	_		<u>有</u> 有	
図F殴 エナル メチルイソブチルケトン	1.0	_		有	
トルエン	10.0			有	
キシレン	1.0	_	_	有	
スチレン	0.4	_	_	_	
ハノレン	U.T				

本市では、悪臭発生工場・事業場における悪臭規制基準 の適合状況を確認するため、立入検査や悪臭測定を実施す る等、発生源に対する監視・指導を行っています。平成20 年度の悪臭測定の実施状況は、以下のとおりです。

悪臭測定の結果、2事業場で基準超過が認められたため、 文書で改善を指導しました。

◆平成 20 年度 悪臭測定実施状況

発生源業種	工場・事業場数
廃棄物処理事業場	4
肥料・飼料工場	3
製缶工場	1
と 畜 場	1
ĒŤ	9

9. 環境科学研究所における検査・研究

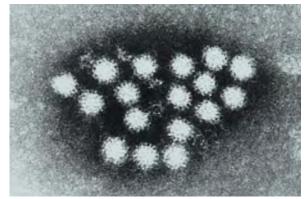
(1) 事業の目的

市民の安全・安心を守り、地域の快適な環境づくり を進めていくために必要な科学的データの提供などを 目的に、調査研究、試験検査、研修指導、情報の収集・提 供を行っています。

(2) 事業の内容

ア.保健衛生部門

(ア)食品・家庭用品などに関する業務


市内で流通している食品や学校給食の食材などについ て、食品添加物や残留農薬、特定アレルギー物質などの検 査や調査をしています。また、貝毒やかび毒のような自然 毒、家庭用品中の有害化学物質などの検査も行っていま す。野菜等の残留農薬については、250種類以上の農薬 一斉分析法を確立するなどの成果がでています。

(イ)微生物に関する業務

食中毒発生時の原因究明のための検査や感染症の流行 状況を把握するための病原体検査などを行っています。

中でも、新型インフルエンザ、エイズ、0157、感 染性胃腸炎などの原因となる細菌やウイルスについて は、遺伝子検査等の高度で精確な検査を行っています。ま た、調査研究として、大幅な時間短縮を目指した検査手

法の開発を独自で行い、一週間以上かかる検査をわずか2 日で結果を出すなどの成果も出ています。

ノロウイルス (感染性胃腸炎の原因となるウイルスの1種:電子顕微鏡写真)

イ.環境科学部門

工場や自動車等から排出されるベンゼンなどの有害大 気汚染物質の環境調査や硫化水素、アンモニアなどの悪臭 物質の検査、その他市民からの苦情や事故時の原因調査な どを行っています。

また、光化学スモッグ発生原因の究明に関する調査・ 研究、PCBなど分解されにくく環境中に広く残留する可 能性のある有害物質の環境調査などを行っています。

このほか、環境省の委託を受け、法律で未規制の有害化 学物質の汚染状況の把握や分析法の開発を行っています。

◆環境科学研究所の検査件数

	調査研究	依頼検査	合 計
平成 18 年度	1,148	8,553	9,701
平成 19 年度	1,523	5,757	7,280
平成 20 年度	1,150	4,243	5,393

有害大気汚染物質の分析

(3) 国際貢献

(独) 国際協力機構 (JICA) や (財) 北九州国際技術協力 協会(KITA)に協力して、公害の著しい開発途上国などから の研修生に対し、大気、水質、保健衛生のモニタリング技術 など、本市に蓄積した技術を生かした研修を行っています。

また、JICA や環境省等からの要請により、現地に専門 家を派遣し、技術指導を行っています。

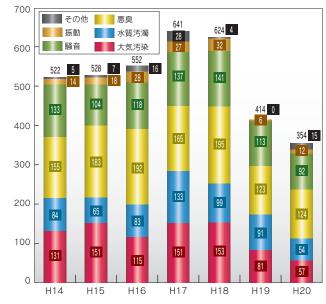
豊かな自然環境と快適な生活環境の確保▶▶

Environment of Kitakyushu City 2009

(4) 平成 20 年度調査研究の概要

	No.	調査研究テーマ	調査研究の概要	共同研究機関	期間
	1	バイオアッセイを用いた河川及 び大気の暴露モニタリングに関 する研究	大気及び河川水中の化学物質(約1,000種類)をスクリーニングし、バイオアッセイ(生物材料を用いて生物学的応答を測定する試験)の結果との関連を解析し、汚染物質についてその生態影響等を評価する。	国立環境研究所 北九州市立大学大学院国際 環境工学研究科アクア研究 センター	
	2	絶滅危惧種「ガシャモク」生育池 調査	絶滅危惧種の「ガシャモク」が日本で唯一自生している小倉 南区のため池では、近年その群落が縮小している。そこで、当 該池の水質・底質等の調査を行い、原因究明や保全対策の道 を探求する。	環境局都市環境管理課、福 岡県保健環境研究所、北九 州市自然史博物館	H16~ H20年度
	3	北九州市内の粉じん中の重金属 等の含有量調査	市内で発生した粉じん苦情に対処するため、市内5ヶ所で採取した粉じん中の重金属含有量を調査し、粉じんに関するバックグランドデータとして整備するもの。		H19~ H21年度
環	4	化学物質環境実態調査	化学物質対策に資するため、化学物質による環境汚染実態を調査するもの。洞海湾、関門海峡の海水及び環境大気について6種の化学物質の分析を実施する。また、未規制物質(トリメチルアミン)の分析法開発に着手する。	環境省 環境安全課	H20年度
環境科学部門	5	海塩粒子影響調査	旧北九州空港跡地は海に近く、企業立地に当たっては塩害が 懸念される。そこで、海塩粒子について、その影響範囲及び程 度を把握するため、沿海部と内陸部の比較調査を行う。	(独)北九州市立大学アクア 研究センター	H20年度
	6	魚介類(淡水魚)におけるダイオ キシン類等蓄積調査	PCBやDDTなどの残留性有機汚染物質 (POPs) による汚染 実態を把握するため、POPsの蓄積量調査を行うもの。平成 20年度は、ギンブナと底質についてPCBの全異性体分析を 行う。	北九州市立大学アクア研究センター	H15~ H20年度
	7	光化学スモッグ発生原因の究明 に関する調査研究(大陸からの 移流に関する研究)	高濃度の光化学オキシダント発生の予測等に関するデータベースを得るため、大陸からの大気汚染物質の移流に関する研究を行う。	九州全県・福岡市・熊本市の 地方研究所	H19~ H21年度
	8	光化学スモッグ発生原因の究明 に関する調査研究(光化学オキ シダント生成へのVOCの寄与に 関する研究)	高濃度の光化学オキシダント発生の予測等に関するデータベースを得るため、光化学オキシダント生成への揮発性有機化合物(VOC)の寄与に関する研究を行う。	福岡県保環研、福岡市保環研	H19~ H21年度
	9	光化学スモッグ発生原因の究明 に関する調査研究(C型研究)	高濃度の光化学オキシダント発生の予測等に関するデータベースを得るため、光化学オキシダントなどの挙動解明に関する研究を行う。	福岡県保環境、福岡市保環研 九州のC型研究参加機関 国環研	H19~ H21年度
	10	病原体発生動向調査(サーベイ ランス事業)での検査分析精度 の向上	感染症法に基づき、病原体発生動向調査を行っているが、現行の検査方法では検出できないウイルスについて、文献調査及び実用可能性を判定し、新たな検査法を導入するもの。PCR(遺伝子レベルの検査法)の導入により、ウイルス検出率の向上と検査時間の大幅な短縮が可能となった。		H19~ H20年度
保	11	食品由来感染症を迅速に探知するための分子疫学的解析法の 有用性に関する研究	0157の新規遺伝子解析法(IS-Printing system)の検討及び九州地区で分離された食中毒原因菌の型別情報データ集の作成を行う。	国立感染症研究所、九州地 区内各地方衛生研究所(13 機関)	H19~ H21年度
保健衛生部門	12	PCR法を用いた細菌性食中毒 検査の迅速化に関する検討	サルモネラや腸炎ビブリオなどの細菌性食中毒の原因菌検索には、従来「培養法」が標準検査法として用いられているが、PCR法を活用することにより、食中毒検査の迅速化が図れないかを検討するもの。サルモネラ、腸炎ビブリオについては、PCR法と培養法の結果が一致し、検査時間の大幅な短縮が可能との結論を得た。		H20~ H21年度
	13	LC/MS/MSを用いた食品中の 有害物質分析法の検討	食品中の合成抗菌剤の分析について、液体クロマトグラフ/タンデム質量分析法(LC/MS/MS)を用いて現行の分析法を改良し、試験検査の正確性及び迅速性の推進を図る。		H19~ H20年度
	14	食品中の残留農薬等試験法の 確立に関する調査研究	食品中の全農薬規制(ポジティブリスト制度)に対応するため、一斉分析法や新規分析法の開発を行うもの。また、試験法にない「加工食品」中の残留農薬の分析法も開発する。平成20年度までに、250種類以上の農薬の一斉分析が可能となった。	大阪府立公衆衛生研究所	H19~ H20年度

10. 公害に関する苦情・要望


公害に関する苦情・要望は、公害の発生状況を知るう えで重要な指標のひとつです。公害が発生した場合、当事 者間の話し合いなどで解決する例もありますが、大部分は 苦情・要望として行政機関へ持ち込まれています。

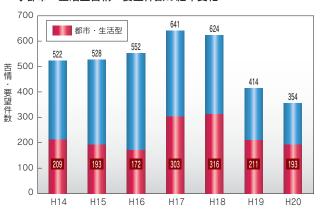
本市では、市民からの苦情・要望に対して、迅速・的 確な処理を行い、その解決を図るよう努めています。


(1) 苦情・要望の推移

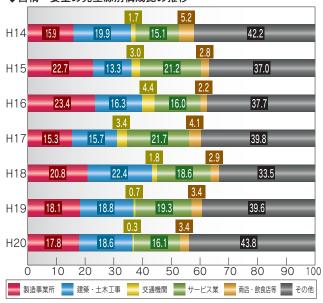
平成20年度に申し立てられた公害に関する苦情・要望 件数の総数は354件(平成19年度414件)ありました。 苦情件数は、前年に比べると60件減少しており、昨年に 引き続き減少しています。

◆種類別(苦情・要望の経年変化)

◆行政区別の苦情·要望状況(平成20年度)



(2) 最近における苦情・要望の特徴


産業公害の沈静化とともに、住宅・商業地域などにお いて、市民生活に関連した冷暖房設備、生活排水、廃棄物、 交通機関、建設工事などの苦情の割合が多くなっていま す。これは、「都市・生活型の苦情」とされています。

平成20年度の都市・生活型苦情・要望件数は、193件で、 全体の 55%を占めています。

◆都市・生活型苦情・要望件数の経年変化

◆苦情・要望の発生源別構成比の推移

(3) 苦情・要望への対応

市民からの苦情・要望の申し立てがあった場合、当事 者への事情聴取や現地調査を行っています。その結果、法 律・条例の違反があれば、発生源に対して施設や作業方法 の改善などを指導しています。

また、関係部局との連携を図りつつ、苦情の解決にあ たっています。