化学物質測定結果

		(ページ No.))
1	;	大気環境	
		環境大気中ダイオキシン類測定結果 ・・・・・・・・・1	
		環境大気中PCB測定結果 ・・・・・・・・・・・・・1	
		ダイオキシン類測定地点・・・・・・・・・・・・2	
		PCB測定地点 ・・・・・・・・・・・・・・・・・3	
2	;	水質・土壌環境	
		ダイオキシン類環境測定結果(水質、底質、生物、地下水、土壌)・・・4~5	
		海域における水質・底質・生物中のダイオキシン類調査地点・・・・・・・6	
		河川及び湖沼における水質・底質のダイオキシン類調査地点 ・ ・ ・ ・ ・ ・ フ	
		土壌・地下水中のダイオキシン類調査地点 ・・・・・・・8	
		公共用水域における内分泌かく乱化学物質測定結果一覧 ・・・・9	

平成24年度 環境大気中ダイオキシン類 測定結果

(単位:pg-TEQ/m³)

測定地点	測定月	PCDDs+PCDFs ^{注)}	コプラナ-PCBs	総毒性等量
	5月	0.040	0.0050	0.045
若松観測局	8月	0.0094	0.0017	0.011
(若松区)	11月	0.046	0.0054	0.051
	2月	0.020	0.0019	0.022
		年間平均値	<u> </u>	0.032
	5月	0.026	0.0044	0.030
松ヶ江観測局	8月	0.0087	0.0020	0.011
(門司区)	11月	0.014	0.0012	0.015
	2月	0.026	0.0023	0.029
		年間平均値	<u> </u>	0.021
	5月	0.035	0.0053	0.040
企救丘観測局	8月	0.0078	0.0011	0.0090
(小倉南区)	11月	0.012	0.00067	0.013
	2月※注	0.018	0.0019	0.020
		年間平均値	<u> </u>	0.021
	5月	0.037	0.0049	0.042
黒崎観測局	8月	0.011	0.00038	0.011
(八幡西区)	11月	0.017	0.0012	0.018
	2月	0.021	0.0023	0.023
		年間平均値	<u> </u>	0.024

[※]注 企救丘観測局2月の測定は、企救丘小学校が工事中のため、守恒中学校にて実施

定量下限値以上の値と、定量下限値未満で検出下限値以上の値についてはそのままの値を用い、検出下限値未満の値については、検出下限値に1/2を乗じて得られた値を用いて各異性体の毒性等量を算出し、それらを合計して 毒性等量を算出する。

《環境基準》 <u>年間平均値が0.6pg-TEQ/m³以下であること</u>

注)PCDDs:ポリ塩化ジベンゾーパラージオキシン(<u>Polyc</u>hlorinated <u>d</u>ibenzo-p-<u>d</u>ioxins) PCDFs:ポリ塩化ジベンゾフラン(<u>Polyc</u>hlorinated <u>d</u>ibenzofurans)

平成24年度 環境大気中PCB 測定結果

(単位:mg/m³)

			\ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
測定地点	測定月	PCB	評価基準値※
	5月	0.00022×10 ⁻³	
若松観測局	8月	0.00012×10 ⁻³	0.0005
(若松区)	11月	0.00026×10 ⁻³	0.0005
	2月	0.00010×10 ⁻³	


※評価基準値: 「PCBを焼却処分する場合における排ガス中のPCB 暫定排出許容限界について (S47.12.22、環境庁 大気保全局長通知)」で示される環境中のPCB濃度

[※]毒性等量の算出について:

ダイオキシン類測定地点

PCB測定地点

平成24年度 ダイオキシン類環境測定結果(水質)

(1) 海域

(単位:pg-TEQ/L)

								測定結	果	(<u>-12.68</u> .	
水	域	海域名	地点名	採水日	рН	塩 分	浮遊物質		ダイオコ	キシン類	
					рп	(psu)	(mg/L)	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
			D2	7月17日	8.3	29.1	3.9	0.019	0.031	0.0083	0.058
		洞海迹	DZ	9月4日	-		2.5	0.048	0.023	0.011	0.081
		心(母/号	D6	7月17日	7.9	23.5	3.5	0.024	0.035	0.0016	0.060
海	+哉		雨水洞海湾出口付近	9月4日	-		2.5	0.041	0.021	0.0120	0.075
四	1-30		H1	7月17日	8.1	30.3	2.3	0.017	0.0081	0.00059	0.025
		響灘	111	9月4日	-	-	2.0	0.047	0.047	0.0037	0.098
			H5	7月17日	24.8	30.2	1.5	0.018	0.010	0.0027	0.030
		周防灘	S-1	7月25日	8.5	28.1	0.6	0.0013	0.004	0.00054	0.017
	理灘	基準								1.0	

(2) 河川

(単位:pg-TEQ/L)

								V5.1 / -		(
								測定結			
水	域	河川名	地点名	採水日	На	電気伝導率	浮遊物質		ダイオキ	トシン類	
					РΠ	(µ S / cm)	(mg/L)	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
		江川	栄橋	10月9日	7.8	42500	2.4	0.045	0.045	0.00099	0.091
		新々堀川	本陣橋	10月9日	8.1	24500	2.5	0.016	0.0048	0.0048	0.026
		撥川	JR引込線横	10月9日	8.3	4740	0.6	0.014	0.0045	0.00062	0.019
		割子川	JR鉄橋下	10月9日	7.7	26600	2.3	0.017	0.026	0.0078	0.050
		金手川	洞北橋	10月9日	8.0	41800	3.1	0.017	0.023	0.011	0.051
		板櫃川	新港橋	9月21日	7.6	26100	2.0	0.017	0.12	0.014	0.15
		紫川	勝山橋	9月21日	7.9	8530	0.9	0.018	0.0049	0.0048	0.028
河	Ш	貫川	神田橋	8月27日	7.5	142	5.1	0.10	0.058	0.0070	0.17
		竹馬川	新開橋	8月27日	8.5	577	9.9	0.25	0.18	0.022	0.46
		江川	江川橋	10月9日	7.6	21000	2.3	0.043	0.023	0.00082	0.067
		相割川	恒見橋	8月27日	8.1	310	1.8	0.15	0.06	0.0043	0.22
		奥畑川	宮前橋	8月27日	7.5	215	2.4	0.034	0.020	0.00073	0.055
		清滝川	暗渠入口	9月21日	8.1	221	13	0.13	0.088	0.026	0.25
		大川	大里橋	9月21日	8.4	1620	1.4	0.020	0.0085	0.00088	0.030
		村中川	村中川橋	9月21日	7.9	4140	1.6	0.018	0.036	0.00084	0.054
	, in the second	環境	基準								1.0

(3) 湖沼

(単位:pg-TEQ/L)

								測定結	果	(,
水	域	湖沼名	地点名	採水日	На	電気伝導率	浮遊物質		ダイオキ	Fシン類	
					рп	(µ S / cm)	(mg/L)	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
湖	沼	ます渕ダム	ダムサイト	7月20日	9.1	80.6	<0.5	0.018	0.011	0.0023	0.032
		環境	基準								1.0

平成24年度 ダイオキシン類環境測定結果(底質)

(単位:pg-TEQ/g·dry)

										(辛应·pg-Ti	α, ₀ α., ,
		海域·						測定結	果		
水	域	河川·	地点名	採水日	含水率	強熱減量	硫化物		ダイオキ	Fシン類	
		湖沼名			(%)	(%)	(mg/g·dry)	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
		洞海湾	D2	7月17日	63.9	12.7	0.25	4.8	6.1	2.4	13
海	域	川/母/号	D6	7月17日	61	13.9	0.58	7.4	12	7.8	27
		周防灘	S-1	7月25日	68.8	8.9	0.80	5.2	3.1	0.36	8.6
河	Ш	新々堀川	本陣橋	10月9日	60	14.2	0.29	5.7	7.4	2.0	15
湖	沼	ます渕ダム	ダムサイト	7月20日	69	15.5	0.16	3.5	3.5	0.6	7.6
		環境	基準								150

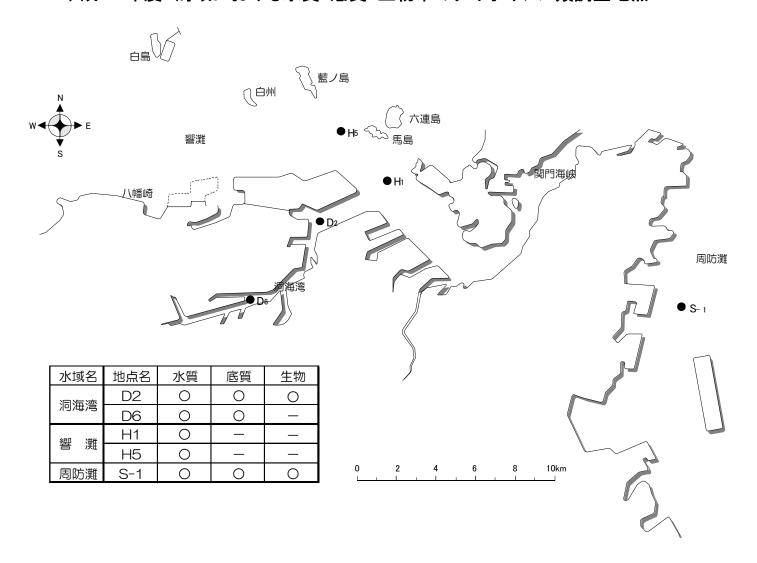
平成24年度 ダイオキシン類環境測定結果(生物)

(単位:pg-TEQ/g)

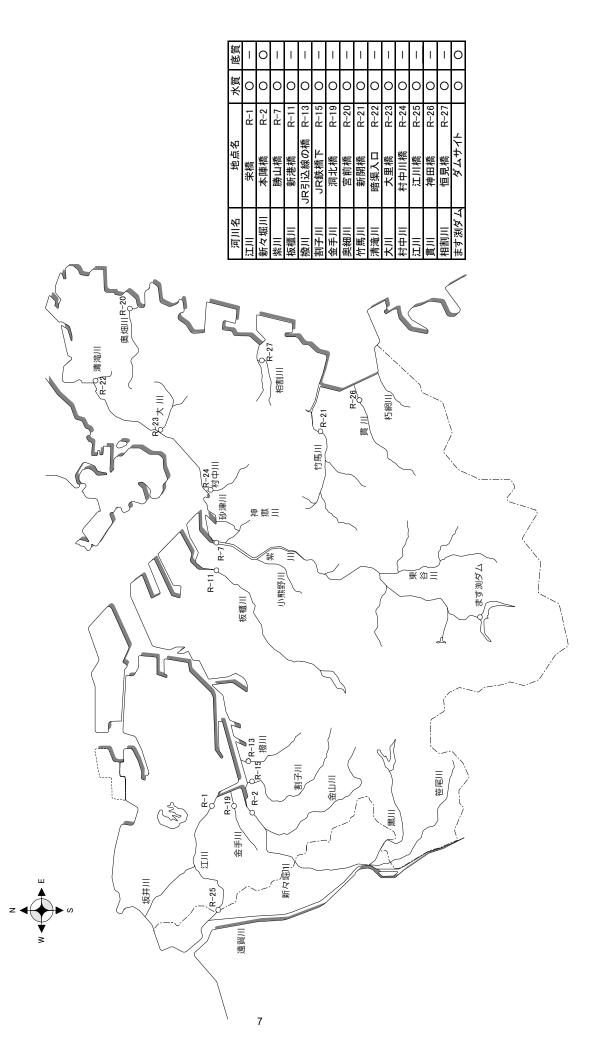
							測定結	果	(<u>∓</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20, 5,
水	域	海域名	地点名	採水日	魚種	脂肪含有量		ダイオキ	ラン類	
					無種	(%)	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
海	域	洞海湾	洞海湾湾口部	10月25日	カワハギ	1.48	0.00041	0.011	0.043	0.054
/丏	地	周防灘	S-1	10月23日	ガザミ	1.42	0.43	0.25	0.30	0.98

平成24年度 ダイオキシン類環境測定結果(地下水)

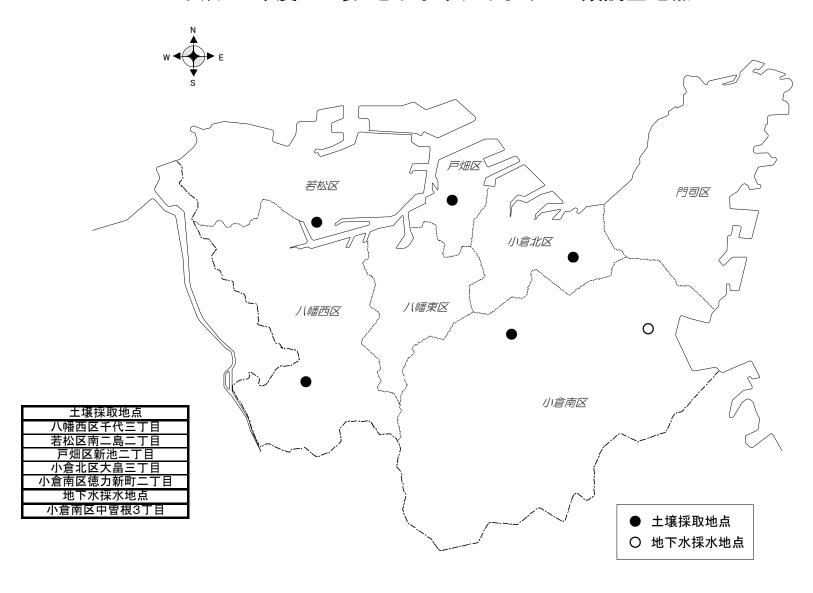
(単位:pg-TEQ/L)


					測定結	課		
地点名	採水日	На	電気伝導率	浮遊		ダイオコ	トシン類	
		рп	(µS/cm)	物質	PCDDs	PCDFs	コプラナーPCBs	総毒性等量
小倉南区中曽根三丁目	9月21日	7.0	275	<0.5	0.013	0.0044	0.00046	0.018
環境基準								1.0

平成24年度 ダイオキシン類環境測定結果(土壌)


(単位:pg-TEQ/g·dry)

									(+ 12.pg 12	U - J /
							測定結	課		
X	名	所在地	採水日	含水率	強熱減量			ダイオ=	トシン類	
				(%)	(%)		PCDDs	PCDFs	コプラナーPCBs	総毒性等量
	幡西	千代三丁目		1.5	2.3	\	0.17	0	0.000081	0.17
	吉松	南二島二丁目		1.4	1.7	\ [0.012	0.14	0.000740	0.15
F	⋾畑	新池二丁目	11月15日	1.5	3.3	\ [0.46	0.28	0.0028	0.74
	倉北	大畠三丁目		1.2	2.9	\ [0.010	0.0059	0.00078	0.016
小	倉南	徳力新町二丁目		1.0	2.4		0.077	0.0041	0.0041	0.081
		環境基準								1000


平成24年度 海域における水質・底質・生物中のダイオキシン類調査地点

平成24年度 河川及び湖沿における水質・底質のダイオキシン類調査地点

平成24年度 土壌・地下水中ダイオキシン類調査地点

公共用水域における内分泌かく乱化学物質測定結果一覧(平成20年度~平成24年度)

【海域】

【海域】																[単位: μg/l
海域名	採取地点名		,	ニルフェノー	・ル			4-t-7	トクチルフェ.	ノール			Ľ	スフェノール	-A	
海坝石	休取地点石	H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度
洞海湾	D2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.060	0.061	0.081	ND	0.038
川 海 冯	D6	ND	ND	DN	ND	ND	0.010	ND	ND	ND	ND	0.175	0.093	0.19	0.028	0.064
響灘	H1	0.378	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.022	ND	ND
音無	H5	0.308	ND	ND	ND	ND	0.007	ND	ND	ND	ND	ND	0.022	0.012	ND	ND
戸畑泊地	K7	0.388	ND	0.68	0.16	0.196(<u>%</u> 1) 0.168	0.022	ND	0.006	ND	ND	0.057	0.058	0.085	0.017	0.016
境川泊地	K8	0.117	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.338	0.027	0.029	ND	ND
周 防 灘	S-1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.014	ND	ND	ND
+4:	出下限(μg/L)			0.020(※1)					0.005					0.010		
快	ΤΙΙ. ΜΧ (Ή Β' Γ)			0.112					0.000					0.010		
予測無	予測無影響濃度(μg/L)		0.608				0.992				47 ¹⁾ ,24.7 ²⁾					

[|] アのボッド 面点は ドルドレ | 0.000 | 0.992 | 47''(24.7'' | (※1)K7におけるノニルフェノールのみ、従来の測定方法とは別に、「平成22年度10月環境省水・大気環境局水環境課 要調査項目等調査マニュアル 4-t-オクチルフェノール及びノニルフェノールの分析方法、(固相抽出 GC/MS法) 」による測定も行った。
1) パーシャルライフ サイクル 試験による
2) フルライフサイクル試験による

【河川】																	[単位: μg
河川名	採取地点名	幸 上 幸 旦).	ニルフェノー	・ル			4-t-7	「クチルフェ.	ノール			Ľ	スフェノール	/A	
州川石	休取地点石	地無審与	H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度
III	栄橋	R-1	0.304	ND	ND		ND	0.016	ND	ND		ND	0.751	0.073	0.081		0.02
エ // I	江川橋	R-25	ND	ND	ND	/	ND	0.015	0.010	ND	/	ND	0.639	0.096	0.021	/	0.012
断々堀川	本陣橋	R-2	ND	ND	/	ND	/	0.008	DZ	/	ND	/	0.152	0.059	/	0.017	/
紫川	勝山橋	R-7	ND	ND	ND	ND	ND	0.006	DN	ND	ND	ND	1.199	0.017	0.014	ND	ND
神嶽川	旦過橋	R-8	ND	ND	ND		ND	ND	ND	ND		ND	0.886	ND	ND		ND
扳櫃川	新港橋	R-11	ND	ND	ND		ND	ND	DN	ND	/	ND	0.411	0.019	0.015	/	ND
發川	JR引込線横の橋	R-13	0.202	ND	/	ND		0.007	0.006		ND	/	0.765	0.62	/	0.015	/
割子川	JR鉄橋下(こうじん橋下流)	R-15	0.463	ND		ND		0.017	0.007		ND		0.344	0.098		0.032	/
金山川	新々堀川合流前(長尾橋)	R-17	0.471	ND		ND		0.012	ND		ND		0.025	0.078		0.020	/
金手川	洞北橋	R-19	0.467	ND	ND		ND	0.016	ND	ND		ND	1.024	0.098	0.048		0.019
奥畑川	宮前橋	R-20	0.113	ND		ND		ND	ND		ND		0.022	0.18		ND	
竹馬川	新開橋	R-21	0.410	ND		ND		0.007	ND		ND		0.059	0.11		ND	
	暗渠入口	R-22	0.462	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND		ND
大川	大里橋	R-23	0.465	ND	ND		ND	ND	ND	ND		ND	0.040	0.093	ND		ND
村中川	村中川橋	R-24	0.460	ND	ND		ND	0.008	ND	ND		ND	0.038	0.072	0.014		ND
訓	神田橋	R-26	0.245	ND		ND		0.016	ND		ND		0.660	0.14		ND	

【湖沼】 [単位: μg/L]

0.005

0.010 47¹⁾,24.7²⁾

	湖沼名	採取地点名	ノニルフェノール				4-t-オクチルフェノール					ビスフェノールA					
L			H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度	H20年度	H21年度	H22年度	H23年度	H24年度
10	ます 渕	ダムサイト	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	ND	ND	ND	ND
Е	検と	出下限(μg/L)	0.112					0.005					0.010				
	予測無	影響濃度(μg/L)	0.608				0.992					47 ¹⁾ ,24.7 ²⁾					

¹⁾ パーシャルライフサイクル 試験による 2) フルライフサイクル 試験による